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Abstract

In this study, nonlinear oscillations of microbeams, actuated by suddenly applied electrostatic force, are investigated.

Effects of electrostatic actuation, residual stress, midplane stretching and fringing fields are considered in modeling.

Galerkin’s decomposition method is utilized to convert the governing nonlinear partial differential equation to a nonlinear

ordinary differential equation. Homotopy analysis method is used to find semi-analytic solutions to the vibrations of

microbeams. Convergence regions of the solution series are determined. Influences of increasing the voltage and midplane

stretching on the frequency of vibrations are also studied. Results are in good agreement with numerical and experimental

findings.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A microbeam, actuated by electrostatic distributed force, is a flexible beam-shaped element attached to a
fixed rigid substrate. Electrostatically actuated microbeams are extensively used in different applications such
as signal filtering and mass sensing [1]. When the input voltage exceeds a critical value, called pull-in voltage
(Vpi), the flexible microbeam spontaneously deflects towards the rigid plate. In microbeams, pull-in instability
is a basic phenomenon considered in design. Pull-in instability was observed experimentally by Taylor [2] and
Nathanson et al. [3]. Osterberg studied microelectromechanical systems (MEMS) with circular and
rectangular shapes and achieved several closed-form models for pull-in instability in these systems [4].

When the rate of voltage variation is low and consequently inertia has almost no influence on the
microsystem behavior, the critical value of voltage is called static pull-in voltage (Vpi). However, when the rate
of voltage variation is not negligible, the effect of inertia has to be considered and the critical voltage value is
called dynamic pull-in voltage (Vpid). The pull-in instability related to this situation is called dynamic pull-in
instability [5,6].
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

b width of the plate
d0 initial air gap
Ey effective Young’s modulus
h plate thickness
Ib moment of inertia of the cross-section
l length of the plate
m degree of the electrostatic force Taylor

approximation
Ni initial (residual) axial load
Ns axial load due to the midplane stretching
p order of approximation
q embedding parameter
t time
u(t) time-dependent deflection parameter

V voltage
Z deflection

Greek symbols

e vacuum permittivity
r density
j(x) trial function
o nonlinear frequency

Special functions and parameters

‘ auxiliary parameter
homotopy function

L auxiliary linear operator
N nonlinear operator
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Studying vibrational behavior of MEMS is quite useful in determining design parameters of these systems.
Vibrational characteristics of microbeams have been generally studied assuming small vibrations around a
deflected position. In Ref. [7], oscillatory behavior of microbeams considering midplane stretching has been
studied. In Ref. [1] vibrations of double-clamped microbeams, predeformed by an electric field, have been
investigated. Vibrations of electrostatically actuated microstructures have also been studied in Refs. [8–10].

Different techniques have been proposed for finding solutions to nonlinear equations of MEMS, for
example the differential quadrature method [11], the finite element method [9,10] and homotopy methods [12].
Although it is difficult to get an analytic approximation for different phenomena in MEMS, there are some
analytic methods for nonlinear problems of microelectromechanical systems such as perturbation techniques
[13,14]. In general, perturbation approximations are valid only for weakly nonlinear problems [15]. Based on
the homotopy method in topology, Liao proposed homotopy analysis method (HAM) to present analytic
solutions to strongly nonlinear problems [15]. This method can also be effective in finding solutions to the
vibrations of microbeams.

In the present paper, vibrations of microbeams subjected to suddenly applied step voltages are investigated.
Different sources of nonlinearity such as electrostatic force and midplane stretching are considered. Galerkin’s
decomposition method is utilized to convert the nonlinear partial differential equation of motion to a nonlinear
ordinary differential equation. Afterward, Liao’s homotopy analysis method is utilized to find semi-analytic
solutions to the nonlinear vibrations of microbeams. Effects of increasing voltage, midplane stretching and
fringing fields are studied. Influences of different parameters on convergence regions are also investigated.
2. Modeling and formulation

Fig. 1 displays a prismatic double-clamped microbeam suspended above a rigid substrate. When a voltage V

is applied between the conductive microbeam and the substrate plate, an attractive electrostatic force causes
the microbeam to deflect. In Fig. 1, x is the coordinate along the length, z is the coordinate along the thickness,
Z is deflection in the z-direction and t is the time. The length of the microbeam is l, the width is b, the density is
r, the thickness is h, the vacuum permittivity is e, the moment of inertia of the cross-section about the y-axis is
Ib, the effective Young’s modulus of the beam is Ey and the air initial gap is d0.
The electrostatic force per unit area takes the following form:

F e ¼ 1=2
�V2

ðd0 � Zðx; tÞÞ2
1þ b

d0 � Zðx; tÞ

b

� �
(1)
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Fig. 1. Schematic view of a double-clamped microbeam.
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Here the term b accounts for the fringing fields effect due to the finite width of the beam. For a double-
clamped beam b ¼ 0.65.

By incorporating von Kármán nonlinearity for midplane stretching, the deflection Z in z-direction is
governed by [1]

rbh
q2Z

qt2
þ EyIb

q4Z
qx4
� ðNi þNsÞ

q2Z

qx2
� bFe ¼ 0 (2)

where Ni is the residual (initial) axial load and Ns the axial load due to the midplane stretching which is
given by

Ns ¼
Eybh

2l

Z l

0

qZ

qx

� �2

dx (3)

The microbeam deflection is subjected to the following kinematic boundary conditions:

Zð0; tÞ ¼ 0;
qZð0; tÞ

qx
¼ 0; Zðl; tÞ ¼ 0;

qZðl; tÞ

qx
¼ 0 (4)

The initial conditions are as follows:

Zðx; 0Þ ¼ 0;
qZðx; 0Þ

qt
¼ 0 (5)

Based on one DOF model of the beams, Eqs. (2)–(5) can be solved by appropriate accuracy [1]. The solution is
constructed by expressing the deflection function as the product of two separate functions

Zðx; tÞ ¼ fðxÞuðtÞ (6)

where u(t) is an unknown time-dependent deflection parameter and fðxÞ is a trial function satisfying the
kinematic boundary conditions. For example, fðxÞ can be assumed as

fðxÞ ¼
x

l

� �2
1�

x

l

� �2
(7)

The term Fe in Eq. (2) can be approximated by Taylor’s series as

Fe ¼
1

2

�V2

ðd0 � Zðx; tÞÞ2
1þ b

d0 � Zðx; tÞ

b

� �
¼
Xm

j¼0

ZjZðx; tÞ
j

¼
1

2
�V2 1

d2
0

þ
2Zðx; tÞ

d3
0

þ
3Zðx; tÞ2

d4
0

þ
4Zðx; tÞ3

d5
0

þ
5Zðx; tÞ4

d6
0

þ � � �

 !

þ
1

2

�bV 2

b

1

d0
þ

Zðx; tÞ

d2
0

þ
Zðx; tÞ2

d3
0

þ
Zðx; tÞ3

d4
0

þ
Zðx; tÞ4

d5
0

þ � � �

 !
(8)
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where m is the degree of the electrostatic force Taylor approximation. Substituting for Fe from Eq. (8) into
Eq. (2) and also for Ns from Eq. (3) into Eq. (2), one obtains

TðZðx; tÞÞ ¼ rbh
q2Zðx; tÞ

qt2
þ EyIb

q4Zðx; tÞ
qx4

� Ni þ
Eybh

2l

Z l

0

qZðx; tÞ

qx

� �2

dx

 !
q2Zðx; tÞ

qx2

�
b�V2

2

1

d2
0

þ
2Zðx; tÞ

d3
0

þ
3Zðx; tÞ2

d4
0

þ
4Zðx; tÞ3

d5
0

þ
5Zðx; tÞ4

d6
0

þ � � �

 !

�
b�V2

2

1

d0
þ

Zðx; tÞ

d2
0

þ
Zðx; tÞ2

d3
0

þ
Zðx; tÞ3

d4
0

þ
Zðx; tÞ4

d5
0

þ � � �

 !
¼ 0 (9)

The one-parameter Galerkin’s solution can be computed by [1]Z l

0

fðxÞTðZðx; tÞÞdx ¼ 0 (10)

After substituting for T(Z(x, t)) from Eq. (9) into Eq. (10) and integrating by parts in some terms, the
governing equation for u(t) becomes (for the case m ¼ 4)

M
d2

dt2
uðtÞ þMluðtÞ þ LV 2 þDV 2u2ðtÞ þ ðS þ EV 2Þu3ðtÞ þ GV 2u4ðtÞ ¼ 0 (11)

where

l ¼
K � V2B

M
(12)

For more accuracy, higher degrees of the electrostatic force Taylor approximation can be used. For the cases
m ¼ 5 and 6, one obtains the following equations, respectively:

M
d2

dt2
uðtÞ þMluðtÞ þ LV 2 þDV 2u2ðtÞ þ ðS þ EV 2Þu3ðtÞ þ GV 2u4ðtÞ þ JV 2u5ðtÞ ¼ 0 (13)

M
d2

dt2
uðtÞ þMluðtÞ þ LV 2 þDV 2u2ðtÞ þ ðS þ EV 2Þu3ðtÞ þ GV 2u4ðtÞ þ JV2u5ðtÞ þ PV 2u6ðtÞ ¼ 0 (14)

subject to zero initial conditions. Coefficients M, K, L, D, S, E, G, J, P and B are presented in Appendix A.
In the next section, homotopy analysis method is utilized to solve the microbeam problem.

3. Application of homotopy analysis method to the microbeam problem

HAM is an effective analytic method for solving nonlinear equations. This method transforms a general
nonlinear problem into an infinite number of linear problems by embedding an auxiliary parameter q [16]. As
q increases from 0 to 1, the solution varies from the initial approximation to the exact solution. The homotopy
function is constructed as [15–21]

ðF; q;‘;HðtÞÞ ¼ ð1� qÞL½Fðt; qÞ � u0ðtÞ� � q‘HðtÞN½Fðt; qÞ� (15)

where ‘, u0(t), H(t), L and N are a nonzero auxiliary parameter, an initial guess, a nonzero auxiliary function,
an auxiliary linear operator and a nonlinear operator, respectively. Quantities ‘ and H(t) adjust the
convergence region of the solution. For the microbeam problem, the auxiliary function can be chosen in the
form H(t) ¼ 1.

Consider Eq. (11) as the equation of motion (m ¼ 4). The procedures for the cases m ¼ 5 and 6 are similar
to the case m ¼ 4. From Eq. (11), the nonlinear operator N½Fðt; qÞ;LðqÞ� can be defined as

N½Fðt; qÞ;LðqÞ� ¼
q2Fðt; qÞ

qt2
þ LðqÞFðt; qÞ þ

LV2 þDV 2F2ðt; qÞ þ ðS þ EV 2ÞF3ðt; qÞ þ GV 2F4ðt; qÞ

M
¼ 0 (16)

subject to zero initial conditions. It should be noted that Lð1Þ ¼ l ¼ ðK � BV 2Þ=M.



ARTICLE IN PRESS
M. Moghimi Zand et al. / Journal of Sound and Vibration 325 (2009) 382–396386
To construct the homotopy function, the auxiliary linear operator can be chosen as

L Fðt; qÞ½ � ¼
q2Fðt; qÞ

qt2
þ o2Fðt; qÞ (17)

The function Fðt; qÞ can be expanded in a power series of the embedding parameter q using Taylor’s theorem
as follows:

Fðt; qÞ ¼ u0ðtÞ þ qu1ðtÞ þ q2u2ðtÞ þ q3u3ðtÞ þ q4u4ðtÞ þ q5u5ðtÞ þ q6u6ðtÞ þ � � � (18)

The function L can be expanded as

LðqÞ ¼ o2 þ qo1ðoÞ þ q2o2ðoÞ þ q3o3ðoÞ þ q4o4ðoÞ þ � � � (19)

By equating to zero the homotopy function, the zero-order deformation equation is constructed as

ð1� qÞL½Fðt; qÞ � u0ðtÞ� ¼ q‘N½Fðt; qÞ;LðqÞ� (20)

Fð0; qÞ ¼ 0;
qFð0; qÞ

qt
¼ 0 (21)

When q ¼ 0, Eq. (20) becomes

L½Fðt; 0Þ � u0ðtÞ� ¼ 0 (22)

which gives the zero-order approximation of u(t).
It is straightforward to set the initial guess u0(t) to zero. Differentiating Eq. (20) with respect to q and then

setting q ¼ 0, yields the first-order deformation equation, which gives the first-order approximation of u(t)
by solving

L½u1ðtÞ� ¼ ‘N½Fðt; qÞ;LðqÞ�
��
q¼0

(23)

subject to zero initial conditions. The higher-order approximations of the solution u(t) can be found by solving
high-order deformation equations. Differentiating Eq. (20) j times with respect to q, and then setting q ¼ 0 and
finally dividing each side by j!, one obtains the jth-order deformation equation

L½ujðtÞ � wjuj�1ðtÞ� ¼
1

ðj � 1Þ!
‘
qj�1N½Fðt; qÞ;LðqÞ�

qqj�1

����
q¼0

(24)

where

wj ¼
0 when jp1;

1 otherwise:

�
and LðqÞ ¼ o2 þ qo1ðoÞ þ q2o2ðoÞ þ q3o3ðoÞ þ q4o4ðoÞ þ � � � (25)

Here, the terms oj can be identified by means of no secular terms. It is noteworthy that the vibrations of an
undamped microbeam under the actuation of the electrostatic force can be expressed by the following base
functions:

cosðkotÞ; k ¼ 1; 2; 3; . . . (26)

Therefore, to eliminate the secular terms in the jth-order approximation, one can set the coefficient of cos(ot)
in the (j�1)th-order deformation equation to zero. This provides an algebraic equation. Solving this algebraic
equation yields oj�2 as a function of o. After finding sufficient approximations, by setting q ¼ 1 in Eqs. (18)
and (19), one gets

Lð1Þ ¼ l ¼ o2 þ
Xp

j¼1

okðoÞ ¼ o2 þ o1ðoÞ þ o2ðoÞ þ � � � þ opðoÞ (27)

uðtÞ ¼
Xpþ2
j¼0

ujðtÞ ¼ u0ðtÞ þ u1ðtÞ þ u2ðtÞ þ u3ðtÞ þ u4ðtÞ þ � � � þ upþ2ðtÞ (28)
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where p is the order of approximation. The nonlinear frequency o can be found by solving Eq. (27).
The method can also be applied for different degrees of the electrostatic force Taylor approximation (m).
The terms o1, o2, o3, o4, o5 and o6 for m ¼ 4 are presented in Appendix B.
Table 1

The parameters of the double-clamped microbeams [22].

Beam length (mm) Thickness (mm) Initial gap (mm) Width (mm) Residual axial

load (N)

Effective Young’s

modulus (GPa)

210 1.5 1.18 100 0.0009 (tensile) 166

310

410

510

Table 2

A comparison between the experimental and calculated results.

Beam length (mm) o0/2p (kHz)

Measured [22] Calculated [22] Calculated [11] Semi-analytic method

(present study, m ¼ 4)

210 322.05 324.70 324.70 324.78

310 163.22 164.35 163.46 163.16

410 102.17 103.80 103.70 103.42

510 73.79 74.80 73.46 74.38

Fig. 2. Variations of the nonlinear frequency (Hz) with applied step voltage (V) for different values of p (m ¼ 4).
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4. Results and discussions

To validate the model, a comparison is performed using microbeams with parameters listed in Table 1. The
effective Young’s modulus for the microbeams material is Ey ¼ 166GPa. Further, it is assumed that the
residual axial load is Ni ¼ 0.0009N (residual stress s ¼ 6MPa). The residual stress may be induced during
the fabrication process. Table 2 lists the calculated and measured initial frequencies for these microbeams.
Table 2 reveals that the results obtained from the present model agree very well with numerical and
experimental results presented in the literature.

Fig. 2 shows variations of nonlinear frequency versus applied voltage using semi-analytic method for m ¼ 4
and 5. As it can be seen, when the input voltage increases, the nonlinear frequency of vibrations decreases.
This diagram signifies that for a large range of applied voltages, there exists good agreement between results
calculated by assuming m ¼ 4 and those obtained by assuming m ¼ 5.

In Fig. 3 variation of the nonlinear frequency with the input voltage for various degrees of electrostatic force
approximation is shown. The presented diagram reveals that the differences between nonlinear frequencies
computed by fourth, fifth and sixth degree approximations are negligible. It indicates that the fourth degree
approximation for electrostatic force is sufficient in calculations for these microbeams.

Fig. 4a shows deflections of the double-clamped microbeam with length l ¼ 210 mm for input voltage of
20V. Fig. 4b depicts deflections for input voltage of 25V. As seen, for low voltages, low orders
of approximation (p) are sufficient to find deflections accurately. Nevertheless, for high voltages, higher orders
of approximation are required. In these figures, the microbeam equation has been solved numerically by
Runge–Kutta method using MAPLE fsolve command. It is noteworthy that expanding L using Eq. (19)
effectively reduces the required order of approximation (p); however, it forces us to solve a set of nonlinear
equations to find the nonlinear frequency. A method of finding the frequency without a need for solving
nonlinear equations has been presented in [23].
Fig. 3. Variations of the nonlinear frequency (Hz) with applied step voltage (V) for the double-clamped microbeam with length l ¼ 210mm
and different values of m (p ¼ 3).
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Fig. 4. Midpoint deflection time history for the double-clamped microbeam with length l ¼ 210mm: (a) input voltage of 20V and (b) input

voltage of 25V (Vpid ¼ 26.96V). � Runge–Kutta; — Semi-analytic.

M. Moghimi Zand et al. / Journal of Sound and Vibration 325 (2009) 382–396 389
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Fig. 5. Midpoint deflection time history for the double-clamped microbeam with length l ¼ 510mm: (a) input voltage of 5.2V and (b)

input voltage of 5.6V (Vpid ¼ 6.04V). � Runge–Kutta; — Semi-analytic.

M. Moghimi Zand et al. / Journal of Sound and Vibration 325 (2009) 382–396390
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Fig. 6. Variations of the nonlinear frequency (Hz) with applied step voltage (V) for the double-clamped microbeam with length l ¼ 210mm
and different residual axial loads.

Fig. 7. Midpoint deflection time history for the double-clamped microbeam with length l ¼ 210mm and different residual axial loads

actuated by input voltage of 15V.� Runge–Kutta; — Semi-analytic.

M. Moghimi Zand et al. / Journal of Sound and Vibration 325 (2009) 382–396 391
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Fig. 8. Variations of the nonlinear frequency (Hz) with applied step voltage (V) for the double-clamped microbeam with length l ¼ 210mm
with and without midplane stretching.

Fig. 9. Midpoint deflection time history for the double-clamped microbeam with length l ¼ 210mm (p ¼ 6, m ¼ 4). � Runge–Kutta; —

Semi-analytic.

M. Moghimi Zand et al. / Journal of Sound and Vibration 325 (2009) 382–396392
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Figs. 5a and b show deflection time history of a microbeam with length l ¼ 510mm for input voltages of 5.2
and 5.6V, respectively. It can be observed from Figs. 4 and 5 that there is excellent agreement between results
calculated by Runge–Kutta method and those obtained by the semi-analytic method (particularly for p ¼ 5, 6).

In Fig. 6 influence of residual stress on nonlinear frequency is observed. As it can be seen, pretension in
microbeams results in increasing nonlinear frequency.

Fig. 7 elaborates deflection time history of the microbeam with length 210 mm for different axial loads. As
depicted in Fig. 7, precompression increases deflections for a specific applied voltage.

In Fig. 8 influence of the midplane stretching on the nonlinear frequency is depicted. As it can be seen,
accounting for the midplane stretching decreases the amplitudes of vibrations. On the other hand, the
neglecting of the midplane stretching underestimates the microbeam stiffness and nonlinear frequency.

Fig. 9 shows deflection time history of the microbeam with length l ¼ 210 mm for low (15V) and high (23V)
voltages. It can be seen that midplane stretching has a relatively significant effect on deflections for high
voltages; while for low voltages, the effect is negligible.
Fig. 10. The _-curve of o for the microbeam with length l ¼ 210mm actuated by a 10V step-input voltage.

Fig. 11. The _-curve of o for the microbeam with length l ¼ 210mm actuated by different voltages (p ¼ 6).
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As discussed before, there is clearly excellent agreement between numerical results calculated by
Runge–Kutta method and semi-analytic results for p ¼ 5, 6 in diagrams containing midpoint deflection
time history.

In homotopy analysis method, by plotting _-curves, it is easy to find a proper value of _ to ensure that the
solution series converge [16]. These curves (_-curves) depict variations of solutions with _. The convergence
region and rate of the solution series can be adjusted by means of the auxiliary parameter _. A proper solution
series has to be independent upon the auxiliary parameter _. In Fig. 10 the _-curve of o for the microbeam
with length l ¼ 210 mm is depicted. The microbeam is actuated by a step voltage of 10V. As it can be seen,
using the higher orders of approximation (p) enlarges convergence regions of the solution series.

In Fig. 11 the _-curve of o for the above-mentioned microbeam is shown for different voltages. Order of
approximation (p) is equal to 6 for this figure. It can be deduced from Fig. 11 that decreasing the input voltage
enlarges convergence regions.
5. Conclusion

In this research, homotopy analysis method has been utilized to find semi-analytic solutions to nonlinear
oscillations of microbeams, actuated by step input voltages. The nonlinear ordinary differential equation of
motion has been built using the Galerkin’s decomposition method. The equation of motion has been solved by
homotopy analysis method. Influences of increasing voltage, axial load and midplane stretching on nonlinear
vibrations have been investigated. It was shown that by increasing actuation voltage, higher-order
approximations are required to find deflections accurately. Effect of auxiliary parameter on solutions has
also been considered to determine convergence regions. Results indicate that higher orders of approximation
enlarge convergence regions of the solution series. Comparing the results of the semi-analytic method with the
numerical results shows excellent agreement between them.
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Appendix A

M ¼

Z l

0

rbhfðxÞ2 dx; L ¼ �

Z l

0

0:5�bfðxÞ

d2
0

þ
0:5�bfðxÞ

d0

 !
dx

B ¼ �

Z l

0

�bfðxÞ2

d3
0

þ
0:5�bfðxÞ2

d2
0

 !
dx; D ¼ �

Z l

0

1:5�bfðxÞ3

d4
0

þ
0:5�bfðxÞ3

d3
0

 !
dx

E ¼ �

Z l

0

2�bfðxÞ4

d5
0

þ
0:5�bfðxÞ4

d4
0

 !
dx; G ¼ �

Z l

0

2:5�bfðxÞ5

d6
0

þ
0:5�bfðxÞ5

d5
0

 !
dx

J ¼ �

Z l

0

3�bfðxÞ6

d7
0

þ
0:5�bfðxÞ6

d6
0

 !
dx; P ¼ �

Z l

0

3:5�bfðxÞ7

d8
0

þ
0:5�bfðxÞ7

d7
0

 !
dx

K ¼

Z l

0

EyIbfðxÞ
d4fðxÞ
dx4

�NifðxÞ
d2fðxÞ
dx2

� �
dx; S ¼ �

Z l

0

0:5Eybh

l
fðxÞ

d2fðxÞ
dx2

Z l

0

dfðxÞ
dx

� �2

dx

 !
dx
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Appendix B

o1 ¼ �
2‘LV 4D

M2o2

o2 ¼ �
‘LV 4

4M3o4
ð8‘DMo2 þ 8DMo2 þ 15‘LS þ 15‘LEV2Þ

o3 ¼
‘LV 4

6M4o6
ð�42‘2L2GV 4 � 45M‘LEo2V 2 � 45M‘2LEo2V 2 � 12M2‘2Do4

� 45M‘LSo2 � 45M‘2LSo2 þ 7‘2LD2V4 � 12DM2o4 � 24‘DM2o4Þ

o4 ¼
‘LV 4

4M5o8
ð�90M2o4‘2LEV 2 � 84Mo2‘2L2GV 4 � 8M3Do6 � 45M2‘LSo4

þ 14M‘3LD2o2V 4 þ 30L2‘3DSV4 � 24M3‘Do6 � 45M2‘3LEo4V 2

� 84Mo2‘3L2GV 4 � 45M2‘3LSo4 � 24M3‘2Do6 � 45‘LEM2o4V 2

þ 14M‘2LD2o2V 4 � 8M3‘3Do6 � 90M2‘2LSo4 þ 30‘3L2DEV6Þ

o5 ¼ �
‘LV 4

1152M6o10
ð�13365‘4L3V 4S2 � 34560Mo2‘4L2DEV 6 � 8064‘4LV 4M2D2o4

þ 1408‘4L2V8D3 þ 17280‘4LSM3o6 þ 48384L2‘4GM2V 4o4 � 34560L2‘4SMDV4o2

þ 17280‘4LEM3o6 � 26730L3‘4ESV 6 � 22176L3‘4DGV8 � 8064L‘2M2D2V4o4

þ 2304‘4M4Do8 � 13365‘4E2L3V8 þ 48384L2‘2M2GV 4o4 þ 9216‘M4Do8

þ 2304M4Do8 þ 51840‘2LM3EV 2o6 þ 9216‘3M4Do8 � 16128‘3M2D2Lo4V 4

� 34560‘3L2MDEV 6o2 � 34560‘3L2MDSV4o2 þ 13824‘2M4Do8

þ 51840‘2LM3So6 þ 17280‘LM3EV 2o6 þ 17280‘LM3So6

þ 96768‘3L2M2GV 4o4 þ 51840‘3LM3EV 2o6 þ 51840‘3M3LSo6Þ

o6 ¼ �
‘LV 4

5760M7o12
ð432000M4o8‘4LEV 2 � 334125‘4L3V 4MS2o2 � 668250‘4L3V6MESo2

� 554400‘4L3V8MDGo2 � 67200‘2LV 4M3D2o6 þ 81900‘5L3V 10D2E

� 864000‘4L2V6M2EDo4 � 201600‘4M3LV 4D2o6 þ 43200‘4LSM4o8

þ 1209600L2‘4GM3V 4o6 � 864000L2‘4SM2DV 4o4 þ 57600M5‘4Do10

þ 403200M3‘2L2GV 4o6 þ 57600M5‘Do10 þ 11520M5Do10 þ 432000M4‘2LEV2o8

þ 115200M5‘3Do10 � 201600L‘3M3D2V 4o6 � 432000M2‘3L2DEV 6o4

� 432000M2‘3L2DSV 4o4 þ 115200M5‘2Do10 þ 432000M4‘2LSo8

þ 108000M4‘LEV 2o8 þ 108000M4‘LSo8 þ 1209600M3‘3L2GV 4o6

þ 684000M4‘3LEV 2o8 þ 684000M4‘3LSo8 þ 35200M‘4L2D3V8o2

� 334125M‘4L3E2V8o2 þ 11520M5‘4Do10 � 554400M‘5L3GDV8o2

þ 35200M‘5L2D3V 8o2 � 432000M2‘5L2EDV 6o4 � 67200M3‘5LD2V4o6
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� 432000M2‘5L2SDV 4o4 þ 81900‘5L3D2SV8 þ 403200M3‘5L2GV 4o6

þ 10800M4‘5LEV 2o8 � 334152‘5L4GEV 10 � 334152‘5L4GSV 8

� 334125M‘5L3E2V 8o2 � 668250M‘5L3ESV 6o2 � 334125M‘5L3S2V 4o2

þ 108000M4‘5LSo8Þ
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